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AN ANALYSIS OF REDUCED HESSIAN METHODS FOR

CONSTRAINED OPTIMIZATION

by

Richard H. Byrd and Jorge Nocedal

ABSTRACT

'We-stdii verge'-properties of reduced .essian successive quadratic pro-
gramming for equality constrained optimization. The method uses a backtracking
line search, and updates an approximation to the reduced Hessian of the Lagrangian
by means of the BFGS formula. Two merit functions)are considered for the line
seach: the 11 function and the Fletcher exact penalty function. We give conditions
under which local and superlinear convergence is obtained, and also prove a global
convergence result. The analysis allows the initial reduced Hessian approximation
to be any positive definite matrix, and does not assume that the iterates converge,
or that the matrices are bounded. The effects ofCa second order correction step,
a watchdog procedure and of Jhe choice of null space basis are considered. This
work can been seen as an extension of the well known results of Powell (1976) for
unconstrained optimization to reduced Hessian methods.

Key words. constrained optimization, reduced Hessian methods, quasi-Newton meth-
ods, successive quadratic programming, nonlinear programming

AMS(MOS) subject classification. 65, 49

1. Introduction.

In this paper we analyze reduced Hessian successive quadratic programming methods for
solving the equality constrained optimization problem

min f(x)zERn

(1.1)
subject to c(x) = 0,
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where f R n - R, and c :n Rt are smooth nonlinear functions. These methods.
which we also refer to as reduced Hessian methods, generate at Xk a search direction by
solving the quadratic program

rain g(zk)Td + -dTZkBkZTd
dE.Rn 2'

(1.2)

subject to c(xk) + A(Xk)Td = 0,

where g is the gradient of f, A(x) = [Vc1(x), ... , Vct(x)] is the n x t matrix of constraint
gradients, Zk is a matrix whose columns form an orthonormal basis for the null space of
A(xi.)T, and Bk is a matrix that approximates the reduced Hessian of the Lagrangian
function. The new iterate is given by

Xk+1 = Xk + akdk,

where the steplength ak is chosen to force progress towards the solution of (1.1). Our
goal in this paper is to develop some practical convergence results for reduced Hessian
methods in which Bk is updated by the BFGS formula and the initial matrix B0 is an
arbitrary positive definite matrix.

Reduced Hessian methods are a special case of successive quadratic programming
(SQP) methods, which are based on the subproblem

mrin g(xk)Td + dTMiddE Rn

(1.3)

subject to c(xk) + A( Xk)Td = 0.

Specifically, problem (1.2) is equivalent to a problem of the form (1.3) with Vk =

ZkBkZk[. The general equality constrained quadratic program (1.3) is equivalent to
a problem of the form (1.2) if and only if ZjMkA(zk) = 0.

Solving problem (1.1) by iterative solution of (1.3) is an old idea since, if Mk =

VL(zk, Ai.) and Ak is the multiplier vector of the quadratic program at iteration k - 1.
this is equivalent to Newton's method on the Kuhn-Tucker conditions for (1.1). An
alternative is to try to make Mk a secant approximation to the Hessian of the Lagrangian,
using a positive definite secant update such as BFGS or DFP. That is, Mk would be
updated so that Mk+Iii = gk, where .k = xk+l -z k, and 9k is some vector approximately

equal to V2 L(x,,A.k)ik, such as VL(xk+l,Ai.) - V.L(x., AIk). This idea cannot be
carried out in a straightforward fashion since the Hessian of the Lagrangian at a solution
of (1.1) is not necessarily positive definite. Several approaches have been proposed for
coping with this difficulty, and reduced Hessian SQP is one of these. Before discussing
reduced Hessian methods, we briefly mention some other approaches which instead solve
a problem of the form (1.3) with Mk an n x n positive definite matrix.
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An early proposal is to update Mk so as to approximate the Hessian of the augmented
Lagrangian, V2xL(xk, Ak) + pAkATj, which is positive definite near the solution if the
scalar p is chosen sufficiently large. This was analyzed by Han (1976), Tapia (1977), and
Glad (1979), who showed that if a sufficiently large value of the augmentation parameter is
used. and if x0 and Mo are good enough approximations to the solution and to the Hessian
of the augmented Lagrangian, respectively, then the iterates converge Q-superlinearly to
the solution. A different approach, due to Powell, is to update the matrix only part way
so that A1 1.31 k = O9k + (1 - 8)Mk.k, where 0 E [0, 1] is chosen to preserve a degree of
positive definiteness. Powell (1978) proves that if {Xk} converges to the solution, and
if the sequences {IMJIkI} and {I(ZTMkZk)- 1 I!} are bounded, then the convergence rate
is R-superlinear. The same result is proved by Fenyes (1987) for his updating scheme.
which preserves positive definiteness only of ZTMkZk. Boggs and Tolle (19R5) suggest
that Mk simply be left unchanged in cases when updating would cause a loss of positive
definiteness. They prove that if {xk} converges to the solution Q-linearly, and if the
directions produced by the algorithm converge sufficiently fast to the null space of the
constraint derivatives, then {xk} converges Q-superlinearly.

The reduced Hessian approach is motivated by the fact that near the solution
Z~jV~xL(xk, Ak)Zk is usually positive definite, and thus it is reasonable to approximate
this matrix using a positive definite update formula. In this case the matrix Bk of (1.2)
would be updated so that Bk+lsk = Yk, where sk = ZT(Xk+l - xk) and Yk is a secant
approximation to ZkTV2 L(zk, Ak)ZkSk. The approach also has the advantage that, when
n - t is small relative to n, the Hessian approximation that needs to be stored is smaller.
Reduced Hessian updating methods have been proposed by Murray and Wright (1978),
Gabay (1982), Gilbert (1987), Coleman and Conn (1984), and Nocedal and Overton
(1985). For the last two approaches, their proposers prove that if x0 and B 0 are good
enough approximations to the solution and to the reduced Hessian of the Lagrangian,
respectively, then the iterates converge 2-step Q-superlinearly to the solution. These two
approaches differ primarily in the choice of yk; that of Coleman and Conn is more costly
in function evaluations, but is probably more robust than that of Nocedal and Overton
(which is closer to the first two approaches mentioned). Actually, Coleman and Conn
consider two versions of their algorithm; here we are referring to the version that uses
only one constraint evaluation in the step computation. We also note that Fontecilla
(1988) proposes a full Hessian method analogous to the algorithm of Coleman and Conn
and proves a similar convergence result.

Most of these methods work reasonabl§' well in most cases, but none of them is
regarded as completely satisfactory in theory or in practice (see Powell (1987)). Note
that all the above mentioned analyses either assume a good initial approximation to the
solution and to the Hessian of the Lagrangian at the solution, or they assume that the or
iterates converge and that the Hessian approximations are bounded in some way. We
regard these assumptions as undesirable since it is not known when they will be satisfied
in practice. The objective of this work is to develop a convergence theory for reduced
Hessian successive quadratic programming that only assumes of the matrices that the
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initial one is positive definite, and does not assume that the iterates converge. Since
we are making no assumptions on Bk or on the convergence of the iterates, there is no
guarantee that xk + dk is closer to the solution x. than xk is. In practice a line search
is usually relied on to force progress towards the solution. This is done by using a merit
function V(x), and by computing the steplength ak so that (xk + akdk) is significantly
less than (Xk).

We will analyze a procedure of this type and show that, under certain conditions.
if x, is within a neighborhood of x. this decrease in the merit function will force {Xk}
to converge to x. R-linearly, whereupon known results will imply that the convergence
is superlinear. Thus our work will be somewhat analogous to the well known paper of
Powell (1976) on the convergence of the BFGS method with inexact line search for a
convex objective function. We have chosen to consider reduced Hessian approaches here
primarily because the issues we are interested in are simpler to deal with than for full
Hessian approaches. Also for simplicity we have chosen to analyze an updating strategy
like that of Coleman and Conn, but many of our results can probably be extended to the
more complex Nocedal and Overton strategy.

The algorithm to be studied is defined in Section 2, and the methods for updating
Bk and for performing the line search are laid out precisely. We consider two merit
functions, the t, function proposed as a merit function in Han (1977), and the Fletcher
(1970), (1973) exact penalty function.

In Section 3 general results of Byrd and Nocedal (1987) on the BFGS update are
used to show that, if an adequate line search is done, then the -nerit function is decreased
significantly for at least a fraction of iterates. This fact is then used to prove a somewhat
weak global convergence result. The effect of choice of the weight in the merit function
is taken into consideration.

In Section 4 we consider the local behavior of the algorithm near a point satisfying
the standard strong sufficiency conditions. We prove that, once the algorithm gets close
enough to such a point it will converge R-linearly. The convergence results here and in
Section 3 are somewhat more satisfactory for the t, merit function than for the Fletcher
function.

In Section 5 we study superlinear convergence. We consider the effect of the choice
of null space basis Zk on convergence rate, and look for conditions under which the
algorithm takes unit steplenghts near the solution. This is not a problem for the Fletcher
function, but for the 11 function the algorithm needs to be modified. We consider two
modifications, the correction step and the watchdog technique, and show that they allow
for unit steplenghts near the solution, which ensures a two-step Q-superlinear rate of
convergence.

Notation. The Lagrangian function will be defined by

L(x,\) = f(x) + ATc(X), (1.4)

and we denote the reduced Hessian of the Lagrangian by G, i.e.

G = ZV2=L(Xk, A\k)Zk. (1.5)
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Throughout the paper 1i'-1 denotes the 12 vector norm or the corresponding induced matrix
norm. When using the 11 or l, norms we will indicate it explicitly by writing IiIIz or
We recall that the 11 and 1,, norms are duals of each other, so that ATc < II lAJkicIJi. A
solution of the problem (1.1) is denoted by z., and we let ek = zXk - X..

2. Reduced Hessian Methods with Line Search

Now we describe a general reduced Hessian SQP algorithm of the type discussed in
§1. We denote the merit function by p, and its directional derivative at x in the direction
d, by D;(x; d). The precise form of V will be discussed later.

Algorithm 2.1
The constants r7 E (0, ) and r, T' with 0 < r < r' < 1 are given.

(1) Set k = 1 and choose a starting point z and a symmetric and positive definite
starting matrix B1.

(2) Compute Zk and obtain d by solving the quadratic program

min g Td+ !dTZkBkZ~d
dERn 2

subject to ck + Ajd T 0. (2.1)

(3) Set ak = 1.

(4) Test the line search condition

V(xk + Okdk) < V(Xk) + I7akDV(Xk;dk). (2.2)

(5) If (2.2) is not satisfied, choose a new ak in [rak, r'ak] and go to (4); otherwise set

Xk+1 = Xk + otkdk. (2.3)

(6) Compute
Sk = ZT(xk+1 - Xk), (2.4)

k = M(V.L(xk + akhk, AM -V.L(xk, Ak)1, (2.5)

where \ k is chosen so that (2.12) is satisfied. If Sk # 0 update Bk using the BFGS
formula

BMsMT Bk Yk T

Bk+1= Bk- sTBsk + .  (2.6)
Sk k~k + jSk

(7) Set k k + 1, and go to (2).

5



The solution to subproblem (2.1), which gives the step direction, may be expressed
as

dk = hk + Vk, (2.7)

where
hk = -ZkB 1'Z[gk, (2.8)

and
Vk = -Ak[AT Ak]-'ck, (2.9)

give an orthogonal decomposition of d, and where g stands for g(Xk), etc. The vector
Vk is in the range space of Ak and may be regarded as a minimum norm Newton step on
the equation c(x) = 0. The vector hk lies in the null space of A, tends to move toward
a stationary point of the Lagrangian and, to first order, leaves the value of c unchanged.
Note that the approximation matrix Bk only affects the null space component h.

The procedure for choosing a new value of a in step (5) is not specified precisely so that
our analysis can cover a variety of line search strategies. There are several procedures,
such as a safeguarded interpolatory line search algorithm or simple multiplication by a
constant, that would give a new Qk in the specified interval. Note that the line search
always reduces the steplength and thus ak < 1 for all k. This is common in successive

quadratic programming algorithms, and is due to the condition c(xk) + A(xk)Tdk = 0.
In the algorithm, Zk refers to an n x (n - t) matrix satisfying AjZk = 0 and kjZk = I.

These conditions do not specify Zk uniquely, and the iteration does depend on our choice
of Zk. It turns out, however, that the results in Sections 3 and 4 are true for any choice
of Zk, and that only to prove superlinear convergence do we need to place additional
restrictions on Zk.

Let us now discuss the choice of the vectors sk and Yk needed in step (6). Since Bk is
meant to be an approximation to the reduced Hessian of the Lagrangian ZTV2VL(xk, )k)Zk

based on information at Xk and Xk+l, it is reasonable to define Sk by (2.4), or equivalently

by sk = ak Zhk, (2.10)

but we could have replaced Zk by Zk+1 in these expressions. The choice of Yk is less
obvious. The formula we use in Algorithm 2.1 is that proposed and analyzed by Coleman
and Conn (1984). To motivate this formula for yt note from (2.10), and from the fact
that ZkZThk = hk, that

Z~VIXL(Xk, A,)Zk-gk Z ([V2 L(xk, Ak)akhkl

, ZT[VL(Xt + akhk, Ak) - V. L(xk, Ak)].

Since we want to impose the secant condition Bk+lsk = Yk it is natural to define yk by
(2.5). There are several slight variations of the formula for Yk that could be used. For
example we could define

Yk = Z+1 [V.L(Xk+l, Ak+l) - V.L(xk+l - akhk, Ak+l)],

6



thereby using the most recent information available. We will only consider the definition

(2.5), but the results of this paper also hold for several of these variations.
A significantly different formula for Yk is

Yk Zk+,[V.L(Xk+,, Ak+1) - V.L(xk, Ak+,)]. (2.11)

Formulas of this type have been suggested by Murray and Wright (1978), Gabay (1982).
and Nocedal and Overton (1985). An advantage of using (2.11) is that it requires only

one evaluation of the derivatives of f and c per iteration as opposed to two evaluations
for (2.5). However, Nocedal and Overton note that (2.11) can be subject to instability in
some cases, and in their analysis they stipulate that under certain conditions the update
be skipped. In this paper we will analyze only the choice (2.5), and leave the formulas
like (2.11), whose analysis is more complicated, for subsequent study.

There are several effective ways to estimate the Lagrange multiplier in the Hessian of
the Lagrangian. We require only that Ak be chosen so that

flAk - A.1j -YAJJlk - z.l (2.12)

is satisfied for some constant -y. This condition is satisfied by several formulas including

Ak =-ATAk ATgk (2.13)

and
,= - [ATAk] - [ATgk -ckl. (2.14)

Powell (1976) has shown that the BFGS method for unconstrained minimization has
strong convergence properties if ykTsk > 0 for all k, and if the sequence {yT k/Y Ts} is
uniformly bounded above. In this paper we will show that these two conditions are also
crucial in the analysis of Algorithm 2.1. The following lemma shows that the definition

(2.5) of yk ensures that these two conditions hold near the solution.

Lemma 2.1 Given an iterate Xk, a step akhk and a Lagrange multiplier estimate Ak.
assume that there exist positive constants m, M such that

mlwII2 < wr [ZkvxL(x, Ak)Zk] u ; MIIwII (2.15)

for all WE Rn-t, and for all x in the line segment joining xk and xk + ckhk. Then

-yksk > m (2.16)IsklI2 -

and
JJYJ2 < A. (2.17)
yTs -
mlk k

7



Proof: If we define
k ZT j VXL(xk + rkhk. Ak)drZk.

then we have from (2.5)
Yk = GSk. (2.13)

Thus (2.16) and (2.17) can be shown to follow from (2.15).

We now consider some merit functions to be used in step (4) of the algorithm. The
first merit function used in a successive quadratic programming algorithm was the tj
merit function (cf. Han (1976))

0W = (x) + ,Ulc()1i. (2.19)

Han used the tj norm of c(x), but other choice of norms are possible. An alternative is
the differentiable function proposed by Fletcher (1973). It is given by

,t,(X) = f(z) + (z)Tc(z) + 1vI1c(z)I2, (2.20)
2

where
,\z) = - [A(z)TA(x)] A(x)g(x) (2.21)

is the least squares Lagrange multiplier estimate at x. To compute the derivative of this
merit function requires second order information, due to the term A(x). However Powell
and Yuan (1986) describe a procedure that uses finite differences to approximate these
second order terms with no extra evaluation of A(x). In this paper we will assume, for
simplicity, that the derivative of A(x) is computed exactly.

Boggs and Tolle (1984) propose a merit function similar to (2.20), and most of our
results for the Fletcher function can be extended to their merit function, if some additional
assumptions are made. Other merit functions have been proposed by di Pilo and Grippo.
and by Schittkowski (see Powell (1987) for a review), but they will not be studied in this
paper.

It is essential that the step generated by Algorithm 2.1 define a descent direction
for the merit function w used, i.e. that DV(zk; dk) < 0. Indeed, in order to establish a
linear convergence rate, that quantity must be significantly negative. Therefore, we now
calculate these directional derivatives, starting with the 11 merit function. Although this
merit function is not differentiable everywhere, it does always have a one-sided directional
derivative, and for the direction di generated by Algorithm 2.1, this takes a particularly
simple form, as we now show.

From Taylor's theorem we have

o.,(xk + adk) - 6Lh(zk) f(zx + adk) - fk + ,kllc(xk + adk)jlj - Uklljck

< agd + PkIlck + aAk dkl[1 + bit 2 d11d1I2

8



for some positive constant bl. (Note that bi actually depends on the weight pk.) From
(2.1) we have that .4Tdk -ck, and therefore, assuming a < 1, we have

¢Mk(xk + adk) - ,,(xk) _ 0 T d-kIIcklj + a2bijjdkj[2. (2.22)

Similarly; we obtain the lower bound

,,(Xk + adk) - 0,,(Xk) >_ a [gTdk - pkjjckjll] - Q2blfldk,112 . (2.23)

Taking limits it is therefore clear that

D¢,(xk; dk) = gk d - J~k[jCkj[1. (2.24)

In order to separate out the effects on the merit function of the null space and -ange
space components of the step we recall the decomposition dk = hk + vk, given by (2.7)-
(2.9). By (2.9), we have

9k = k (2.25)

where ), = A(z,) is given by (2.21) so that

DO,,(xk; dk) = gkhk - Ilk 1 CkjI + )kTck. (2.26)

By (2.8) g~hk k -gTZkB'' Zkjgk, and since the matrices {Bk} will be forced to be pos-
itive definite, this term is always less than or equal to zero. Therefore to ensure that dk

is a descent direction for 0,, it is sufficient to require that /k > IIAjII. Such a condi-
tion is very common when using merit functions with sequential quadratic programming
methods, and appears for example in the global analysis of Han (1977). If the sequence
{Ok} is bounded, then a sufficiently large u exists satisfying p > t1AkI1o, for all k. Since.
however, this value is not known in advance, at each step the weight Ik > I(Akjk, should
be chosen in such a way that it eventually becomes fixed. One way to do this is to choose

IAk at each iterate as follows:

= Pk-i ifkI. > IIAkK+ P (2.27)
= j IikIo + 2p otherwise,

where p is some positive constant.
From now on we will assume that when the 4j merit function 0,,, is used in Algorithm

2.1, the weight Ik is chosen by (2.27). Therefore, for any zk, D,,,(x k; dk) < 0. unless
ZTgk = 0 and ck = 0, which can occur only at a stationary point of problem (1.1).

As mentioned above, one could use other norms than the e1 norm in this merit
function. In fact, all of the results and proofs in this paper involving the merit function
(2.19) remain valid if the t4 norm is replaced with the 1, norm for p E [1, ocx. provided
that the t, norm in (2.27) and elsewhere is replaced with the dual norm t, where

+ = 1. However, we will continue to write f, norm for simplicity.

9
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We now consider Fletcher's merit function (2.20). Since this function is differentiable
we have

g=k + Akk + (--)TCk + vkAkck, (2.28)

where A' is the t x n matrix whose rows are the gradients of the Lagrange multiplier
estimates. Thus, using (2.1) and (2.25) we have

D,,(X k; dk) k gdk - 4jc. c~~k kIk

- k gjk + c jAdk - VkIlCkII2t. (2.29)

Again, as with the t, merit function, the first term is non-positive. It is also clear that. for
any k, t1k can be chosen large enough so that (2.29) is less than or equal to zero. However
the algorithm for choosing p is more complex than (2.27), and we defer discussion of this
issue to the next section, where we analyze the convergence of the algorithm.

3. Global Behavior of the Algorithm

We now consider the convergence properties of the reduced Hessian SQP algorithm
defined in Section 2. We will show that, for a fraction of the steps, significant decrease in
the merit function can be obtained, and that under appropriate assumptions this implies

global convergence.
Equations (2.26) and (2.29) indicate that the direction generated by the algorithm

is a descent direction for the two merit functions if ok and -k are sufficiently large and
Thk = gToZith f h < 0. Therefore the null space component hk must make an acute

angle with the projection of -gp onto the null space, -ZkZ9k. In order to quantify
the decrease in the merit function obtained in a step of the algorithm, we will consider

closely this angle, which is defined by

- (ZkZg T T

cos~k IZkZ,'jgklllhklI

9k-ghk

since I ZnZglI = jjZTgkll. Therefore, from (2.26) and (2.29) we have

DO.. (Xk; dk) k -I9jkJJJ~hkI COSOk - ULkIJCkJ1 + 4 Ck, (3.2)

and
$(X k; dk) k -IZjk1JJ~hk~JcoJ C A kdk - L/k1142kll 2  (3.3)

From these relations it can be seen that for hk to provide significant descent we must
require that COS <k not be too close to zero and that hk not be too small in norm. Both
these quantities depen very strongly on the reduced Hessian approximation Bk By

10



equation (2.8), hk is computed so that BkZThk = -Z'gk, and so by (2.10) we have that
BkSk = -kZTgk. Therefore COS k can also be written as

COSOk kk (3.4)co O 11kil jjB, kkj'

and we have that
jjhklI = 1-4 1 (.5

j Zk~g k I I IBk3kII(3.3
The following theorem, which is proved by Byrd and Nocedal (1987), establishes

bounds on these quantities that hold for a fraction of the iterates.

Theorem 3.1 Let {Bk} be generated by the BFGS formula (2.6) where, for all k > 1,
sk 0 0 and

Yk s > m>O
aSsllk $A;

IlyII- < M.Yk -

Then, for any p E (0, 1), there exist constants 31, #2,,33 > 0 such that, for any k > 1, the
relations

cosO3  31 (3.6)
02 !5 IIBjsjll < 03 (3.7)

hold for at least [pk] values of j E [1, k].

This theorem, which is basic for the analysis of this paper, implies that a fraction p
of the iterates with sk 6 0 are such that the null space component hk gives a significant
reduction in the merit function. Later we will see that the iterates with Sk = 0 also
contribute significantly to the decrease in the merit fucntion. Since it will be useful to
refer easily to these two classes of iterates, we will assign a value to p and make the
following definition.

Definition 3.1 Let p of Theorem 3.1 have the value value p = 5. We define J to be the
set of iterates for which (3.6) and (3.7) hold, or for which sk = 0. We will call J the set
of "good" iterates.

This definition and Theorem 3.1 imply that, J n [1, k] contains at least Fuk1 iterates.
We are now ready to analyze the global behavior of the algorithm. We use the term

global because we do not explicitly assume that the iterates are near the solution, but
only make the following assumptions.

11



Assumptions 3.1 The sequence {Xk} generated by the algorithm is contained iA1 a
convex set D with the following properties.

(1) The functions f : Rn - R. and c : R - Rt and their first and second derivatives
are uniformly bounded in norm over D.

(2) The matrix A(z) has full column rank for all x E D, and there is a constant -YO
such that

IIA(x)[A(z)T A(x)]-'Il :5 "yo (3,8)

for all z E D.

(3) For all k > 1 for which sk # 0 we have

_k$; > m > 0 (3.9)

< Y M. (3.10)
11k Sk

The following lemma on the relation between V1hlI and IIZTgII, for the good iterates,
will be useful in deriving bounds on the directional derivative of the merit functions in
the SQP direction. This lemma does not depend on the merit function used.

Lemma 3.2 Suppose that the iterates {zk} generated by Algorithm 2.1 satisfy Assump-
tions 3.1. Then for any j E J

1~~ TrI
T-lZj gjjj !5 Ihjl _ lj gjII, (3.11)

IIdjl 2 < , jl + -IC.1I. (3.12)

Proof: Let j E J, and first assume that sj 4 0. From (3.5) and (3.7), we have that for
jEJ

- 11hill < (3.13)

which gives (3.11). Using (3.11), (2.9) and (3.8) we have

Ild,1 - IIh 2 + IvII2
~< i-llZfg1(l2 + 7o211CIl2.

/32

If sj = 0 then ZTgj = hj = 0 and the result clearly holds.

PC
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3.1 The 41 Merit Function

We now establish some useful results about the behavior of Algorithm 2.1 with the
4j merit function, and use these results to establish a global convergence theorem. The
following lemma shows that all the steps dk generated by Algorithm 2.1 define descent
directions for the tj merit function, and that a significant reduction in this merit function
is obtained for the good steps.

Lemma 3.3 Let the iterates {xk} be generated by Algorithm 2.1 using the 41 merit func-
tion (2.19) with the weights chosen so that

Uk > I(Xk11. + p, (3.14)

for all k > 0, where p > 0. Suppose that Assumptions 3.1 are satisfied. Then for all
k>1

D .k(xk; dk) < -IlZ/ gkjjhkjj cosOk - pIlckIIh, (3.15)

and there is a positive constant b2 such that for all j E J

D4,O,(zj;di) < -b 2 [IIZTgjII2 + IjciIli] . (3.16)

Moreover for any value p there is a positive constant -I such that if j E J and pj = p
then

,(zj) - ,, + A [IIZTgjIJ2 + Ic)jI] • (3.17)

Proof: From (3.2) and (3.14) it follows immediately that (3.15) holds for all k > 1. Now
suppose j E J. We can apply (3.11) and (3.6) to (3.15) and obtain inequality (3.16) with
b2 = min(O3//3, p).

To consider the decrease in 46, in one iteration, for j E J, note that the line search
enforces the condition (2.2),

01A, (-T) - -0,,,(xi+,) _ -aiDO,,(xj; dj). (3.18)

It is then clear from (3.16) that (3.17) holds, provided the aj can be bounded from below.
Suppose that aj < 1, which means that (2.2) failed for a steplength i:

-0j,,(xi + &di) - 0,,(xi) > t7&D¢,,(zj; di), (3.19)

where
r& < a7  (3.20)

(see step 5 of Algorithm 2.1). From (2.22) and (2.24) we have

0, ,(xj + &dj) - O,,(x.) < &DO.,(xj;d,) + &'bijjdjj12 , (3.21)

where b, is a function of p. Combining (3.19) and (3.21) we have

('1- 1)CkDO,,(xj; dj) < &2bdildjj12  (3.22)

13



From (3.12) and the fact that llcjll is uniformly bounded above we have

jId I12 < b3[11Zfgj11l2 + llc.,l ], (3.23)

for b3 = max(l/0,3,-0 supxeD Ic(z)ll). Combining (3.22), (3.16) and (3.23)

S> (-)b 2  (3.24)

6163

Thus from (3.20) we conclude that the steplengths aj are bounded away from zero for
all j E J, and (3.17) holds with fy = r7b 2 min{1,(I

0
Now that we know from (3.15) that the line search can guarantee d-croase in b at

every iteration, and from (3.17) that 0 decreases significantly at the good iterates, we can
prove a global convergence result for the t4 merit function. (Actually (3.17) is stronger
than we need for global convergence but we will make full use of it in Section 4 to prove
local R-Iinear convergence).

Theorem 3.4 Let the sequence {Xk} be generated by Algorithm 2.1 using the 4j merit
function with weights {pIj} chosen by (2.27). Suppose that Assumptions 3. 1 are satisfied.
Then the weights {/Lk} are constant for all sufficiently large k and liminfk ,.o(IjZTgklI +

IIckll) = 0.

Proof: First note that by Assumptions 3.1 and (2.21) fl11kll1 is bounded. Therefore,
since the procedure (2.27) increases Uk by at least p whenever it changes the weight, it
follows that there is an index k0 and a value p such that for all k > k0 , Ak = p >_ ll IkI+p.
Now by Assumption 3.1-3 there is a set J of good iterates, and by Lemma 3.3 and the
fact that -00(xk) decreases at each iterate, we have that for k > k0 ,

(~)- (Xk+1) = ( (z,) - z+)

j=ko

EJnfko,kj

IllZTgjlj2 + Ic.,ljI].

By Assumption 3.1-1 O() is bounded below for all x E D, so the sum is finite, and thus
the term inside the square brackets converges to zero. Therefore

lim (l1ZfglI + IIc311,) = 0. (3.25)

and since, by Theorem 3.1, J is infinite the theorem follows.

14



Actually this result could have been proved with the boundedness of If I and Iojll in
Assumption 3.1 replaced with the assumption that ,, is bounded below over D for some
k, but the analysis would have been somewhat more complicated.

3.2 Fletcher's Merit Function

Now we consider Algorithm 2.1 using Fletcher's merit function (2.20). Even though
the analysis is similar to that with the tj merit function, we will be forced to make some
additional optimistic assumptions in order to establish convergence.

Recall the directional derivative (3.3),

,k(Zk; d) = gkhkj cosOk + cr)!dk - VkIICkII 2. (3.26)

In this case the weight vk appears to be playing the same role as the difference (A- lik Jl)

does in (3.2). However, since the term involving the derivative of A appears to be of
unpredictable sign, vk may have to be increased to ensure that the descent condition
holds. Considering (3.26) we see that dk is a descent direction if and only if

c 'Adk - lIZkgkIIjIhkllcosok (
V > Cek Olck (3.27)

(If IJckI = 0 we obtain a strong direction of descent for any choice of 'k, and the analysis
that follows becomes very simple. We therefore assume that icklI ? 0.) Condition
(3.27) certainly appears more complex than the corresponding condition (3.14) for the
11 function. Setting that issue aside for the moment, we now show that if we choose Vk

to satisfy a slightly stronger condition than (3.27) we can prove a result analogous to

Lemma 3.3.

Lemma 3.5 Let the iterates {xk} be generated by Algorithm 3.1 using Fletcher's merit
function (2.20) where, for all k > 1, the weights are chosen so that

ck > k 1 2 k P +P 'k + P, (3.2S)

for some positive constant p. Suppose that Assumptions 3.1 are satisfied. Then for all

k > 1 we have that

Dt,,(z<; dk) < - 1IIZkgkIIIIhkII cosGk - p1lc11 2, (3.29)

and there exists a positive constant b4 such that, for all j E J,

Dt,,(zj;di) < -b 4 [lIZfgjIl2 + IcjjII] (3.30)

Moreover for any value v there is a constant 7' such that, if j E J and vj =v,

46,(Xj) - 4,(Xj+t) 2: YL [IjzjgjI2 + IIc,112] • (3.31)

15



Proof: From (2.29) and the definition of Fk

D k(xk; dk) g hk + (Pk - Vk)IIckII2, (3.32)

and using (3.28) and (3.1), equation (3.29) follows. Next, note that, for j E J, equation
(3.30) follows from (3.29) using (3.11), and (3.6).

The rest of the proof is analogous to the proof of Lemma 3.3. Since the line search
enforces the condition (2.2), it is clear from (3.30) that (3.31) holds, provided the Oj can
be bounded from below. As in the proof of Lemma 3.3 we see that if aj < 1, we have
(3.19) and (3.20) for the Fletcher function. Using Taylor's theorem we see that (3.21)
also holds in this case, except that bi now stands for a constant different form the one
defined before (2.22). We therefore obtain (3.22). From (3.12) we have

IIdI12 < bs [IIZfgjII2 + Ilcj3l21, (3.33)

for some positive constant bs. We see, from (3.22), (3.30), and (3.33), that

(1 - 7)b4
bibs (3.34)

Thus from (3.20) we conclude that the steplengths aj are bounded away from zero for
all j E J.

Note that (3.28) gives a computable value, and vk could be increased if necessary, at
each iteration, to satisfy (3.28). In order to use Lemma 3.5 to prove any convergence result
we must know that eventually 1 'k becomes fixed while still satisfying (3.28). Therefore,
by analogy with (2.27), we suggest choosing Vk at each iteration by

Sf Vk-1 if Vk-1 2! Vk + P (3.35)
Wk + 2p otherwise,

where p is some positive constant.
Note that the sequence {',k} will diverge if {k} is unbounded, and in that case

Lemma 3.5 cannot be used to prove convergence. Thus it is essential that the sequence
V-k be bounded. However, in contrast to OAkII, the quantity Wk depends on dk, and thus
Bk, as well as on zk, making its boundedness a difficult question. The most we are able
to say about the boundedness of Vrk is contained in the following result.

Lemma 3.6 Suppose that the iterates {xk} are generated by Algorithm 2.1 using Fletcher's
merit function (2.20) and that Assumptions 3.1 are satisfied. Then, there is a constant
b6 such that for any k,

9k < b6 (sTBksk + 1 , (3.36)

and the sequence {'j} is thus uniformly bounded above for all j E J.
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Proof: By the geometric/arithmetic mean inequality,

c~ ,k= Igh 2Irh

T !gT + 1 (crThk )2

2 2 Ig[hkl

since gThk < 0. Therefore by (3.28), (2.8)-(2.10), and (3.8)

L 2lgf nkl J

114l ll 1 1411 IIskII)2 ]v 1< L 2sTBksk +f Ilcl4 11 ] jj 'k , ll.,(k e,(

< IIA';Il2 srjsk
< 2 TBksk + Ilk

Referring to (2.21) we note that by Assumptions 3.1-1 and 3.1-2, j11)11 is uniformly
bounded for all Xk. By (3.6) and (3.7) it follows that {Fr} is bounded for all j J J. 0

This result is not as strong as one might hope for, since we are not able to bound
the Rayleigh quotient sTBksk/sTsk away form zero for all k. Therefore we cannot rule
out the possibility that a subsequence of these Rayleigh quotients goes to zero in such a
way that {vk} must diverge to yield a descent direction at each iteration. It is not clear
whether this is likely to be a problem in practice or not. It is interesting to note that
Powell and Yuan (1986) avoid these difficulties, when analyzing the Fletcher function, by
assuming a priori that lIBklI and 11Bk"1j are bounded. Under these conditions they show
that, if vk is chosen by a procedure analogous to (3.28), it will be bounded.

Therefore, to prove a global convergence theorem analogous to Theorem 3.4 we will
simply make the optimistic assumption that the sequence {P7k} is bounded.

Theorem 3.7 Let the sequence {Xk} be generated by Algorithm 2.1 using the Fletcher
merit function with the weights vk chosen by (3.35). Suppose that Assumptions 3.1 are
satisfied and that the sequence {1k} defined by (3.28) is bounded above for all k. Then
vk is eventually constant and liminfk...oo(llZgkl + ickll) 0.

Proof: Since the sequence {Trk} is bounded, the procedure (3.35) guarantees that vk will
eventually be constant. By Assumptions 3.1, 4b, is bounded below for al x E D. Then,
using Lemma 3.5, the result follows by the same argument as in the proof of Theorem
3.4.
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4. Local Convergence

Now we consider a local minimizer x. that satisfies the second order sufficiency conditions,
and show that the algorithm is locally and R-linearly convergent to it. We will make
the following assumptions in a neighborhood of x., and for the rest of the paper, these
replace Assumptions 3.1.

Assumptions 4.1 The point x. is a local minimizer for problem (1.1) at which that the
following conditions hold.

(1) The functions f : Rn - R, and c : R-" R t are three times continuously differen-
tiable in a neighborhood of x..

(2) The matrix A(x.) has full column rank. This implies that x. is a Karush-Kuhn-
Tucker point of (1.1), i.e. there exists a vector A. E Rt such that

VL(x., ~A.) = g(x.) + A(x.)A. = 0.

(3) For all w E R"n- , w 0 0, we have wTG.w > 0.

Note tIat (1) and (2) imply that there are constants 7o, L such that, for all x near ..

jjA(x)[A(x)TA(_-)]-I[ 'o, (4.1)

and for all x and z near x.,

IAx) - A(z)II _ 7LIIX -z1l, (4.2)

where A(z) is given by (2.21). Also, (1) and (3) imply that for all (x, A) sufficiently near
(x., A.), and for all w E Rn- t,

MllWji2 < wTG(x, \)W:< MIlW1l2,  (4.3)

for some positive constants m, M. The condition f, c E C3 is only needed for Fletcher's
function; for the 41 merit function it suffices to assume that f, c E C 2 and that their
Hessians are Lipschitz continuous near x..

We need to establish some results about such a local minimizer and its relationship
to the merit functions. First we note that, near x., the quantities c(x) and Z(x)Tg(z)
may be regarded as a measure of the error at z. This result is not new (see e.g. Powell
(1978)), but we give a proof for the sake of completeness. We recall that Z(x) stands for
any orthogonal matrix with the property A(x)TZ(X) = 0.

Lemma 4.1 If Assumptions 4.1 hold, then for all x sufficiently near x.

"i1l- z.II _ Ic(X)II + IIZ(z) Tg(x)ll <_f211X - X.-1, (4.4)

for some positive constants 71, 72.
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Proof: Define the function H R'+ - pRt+t by

Then H (x., A.) = 0, and

H'(xA.) C V,,L(x.,A\.) A(x.)1
H'(., .) A(x.)T 0

We note that H'(x., A.) is nonsingular, for if H'(x., A.)(u T, V T)T =0 for some u E Rn

and some v E Rt, then

V',rL(x., A.)u + A(x.)v =0 (4.5)

A(. )TU -0. (4.6)

Thus uTV2 L(x., A.)u = 0, and by (4.6) and Assumption 4.1-3 this implies that u = 0.
Then, since A(x.) has full rank, (4.5) implies v = 0. Therefore H'(x., A.) is nonsingular.

Let 11 11 denote the norm defined by 11(u T,VT)TjIe = Ijujj + j~vlj, for vectors in R"'
and by the corresponding induced matrix norm, for (n + t) x (n + t) matrices. The
differentiability of H at (x.,,A.) implies that for any c > 0,

H (x, A) - H'(x., X. [ ~ : ] e1 :5 Cox - x.11 + IPA A.11),

for all (x, A) sufficiently close to (x., A.). Since H'(x., A.) is nonsingular, if c is taken
sufficiently small it follows that

7yi(Ilx - x.11 + 1hA - \.Il) <5 IIH~x, A)hle 5 'hx .11 + 11A - A.I, (4.7)

where i'~=IIH'(x.,A.)Ile + c and -yj = 1/IIH'(x.,A\.)1hIjj - C. If we set A = x)
the least squares multiplier, in (4.7) then since V,,L(x, A(x)) = Z(X)Z(X)Tg(z), the left
inequality in (4.4) follows immediately, and the right inequality follows from (4.2) if we
let 72 = -/2(l + UY).

Now we show that, for a fixed weight, either merit function may also be regarded as
a measure of the error.

Lemma 4.2 Suppose that Assumptions 4.1 hold at x.. Then for any Ui > IIA.hk0, there
exist constants 'Y3 and 74, such that for all 11z - x.11 sufficiently small

7f31hz _ .112 5 0,(X) - 0,(X-) 5 '74 [IIz(xT)Tg(x)112 + 11c(z)hII] . (4.8)

Furthermore, for anyzv sufficiently large there are constants 75 and -f6 such that for all

lix - x.11 sufficiently small

X5h _ X.112 < §"(X) _ *6,(X.) -y76 [IIZ(z)Tg(_)112 + IC(X)II2]. (4)

19



Proof: First we consider the Fletcher merit function, which by Assumptions 4.1 is at
least twice continuously differentiable near x.. We have

V,(z) = g(x) + A(x)[A(x) + Vc(x)] + A(x)Tc(x)V21 ,(X.) = 2A,'(. '()Ar+
= V,,L(x., A.) + A.A'(x.) + AI(X.)TAT + vA.AT .

By Lemma 4.1, and since Vf,,(x.) = 0, we have that for any c > 0 there is a constant
'Y6 such that

-1 ( v 2 (X.)l + C) ix - X.112

< f6 [lIZ(XlTg() 112 + Iic(X)112]
for all x sufficiently near x..

To establish the left inequality we define

G = V2 L(x., A.) + A.A'(x.) + ,(X.)TA
T ,

so that 0 + vA.ATj = V 2
4p(z.). Note that Z.GZ. is positive definite. We now show

that G + vA.AT is positive definite for v sufficiently large.
Let K be an n x t matrix with full column rank such that ZTGK = 0. The span of

K could be considered as a subspace that is d conjugate to the span of Z.. Note that
the t x t matrix ATK is nonsingular, since if AT.Kv = 0 for some v E Rt then Kv = Z.w
for some w E Rn-t.But then Z.TZ.w = Z.GKv = 0, which implies that w = 0, and
so v = 0.

Now consider the n x n matrix[z! f + avA.AT'] (Z. K] = zldz. K0K KT (4.10)KT  . ~0 KTd K + vKTA.ArK  . (.0

The matrix on the right hand side is positive definite if v is greater than the smallest
eigenvalue of (KTA.)-'K TK(ATK)-I. In this case, since the product of the three
matrices on the left side is nonsingular, the matrix (Z. K] must be nonsingular, and thus

+ vA.A T = V 2 $ (x.) is positive definite for such v.
Since V2$i,(x) is continuous, there is a constant YVs > 0 such that for all x in some

neighborhood of z., all eigenvalues of V2
.,,(x) are greater than 2-Y5. Therefore, since

vl, (X.) = 0,
.(x) - b.(x.) _ t11 - z.112.

We now treat the 41 merit function with some fixed value of u> I1A.I1o. Consider a
neighborhood N of x. over which (4.9) holds for some v, and such that A - IIA(x)t(. >
1(g - IIAW, and IIc(x)( < -L[ - 1JA.JOC] for all x E N. Then we have that for x E N

0.(X) = ,(x) - (x)Tc(X) - 1VIIc(x)112 + uillc(X)ll
2

> *L,(z + [a - OwiAx)k - 1 V;1c(z)I1j 1c(X)i1i1

> 4(z) + [p - 11A.11.] jIc(x)lJ.
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Since o,(x.) = 4y(x.) the left inequality of (4.8) follows from (4.9) with Y5 = 13. Now

,,(x) < L(x,,.) + (j, + IIA.IIco)fjc(x)If
< L(x., A.) + 12 xL(x.,A.)jIIIx - X.112 + (,+ IA.I!,)Ik(')I[,.

Since L(x.,, A.) = 0,(x.), the right inequality follows from (4.4), and from the bounded-
ness of IIc(x)II near x..

C

A consequence of this lemma is that, for a sufficiently large value of the weight. either
merit function will have a strong local minimizer at x.. We would like to use the descent
property of Algorithm 2.1 to show that x. is a point of attraction of the algorithm. To
do this we make the following assumption on the line search.

Assumption 4.2 The line search has the property that, for Xk sufficiently close to x.,
;((1 - O)Xk + Oxk+l) 5 V(xk) for all 0 E [0, 1].

This assumption is rather similar to, but weaker than, the Curry-Altman condition, and
similarly, there is no practical line search algorithm which can guarantee it absolutely.
However, it seems unlikely that it is violated close to x.. We should note that an as-
sumption of this type is needed also in the context of unconstrained optimization; see for
example §7 of Byrd, Nocedal and Yuan (1987).

Now we consider Algorithm 2.1 using the 41 merit function and show that if an iterate
Xk gets close enough to x., with k large enough, the sequence will stay close to z. and
converge to x. R-linearly.

Theorem 4.3 Let {xk} be generated by Algorithm 2.1 using the 41 merit function (2.19).
with tk chosen by (2.27). Suppose that x. satisfies Assumptions 4.1, that Assumption
4.2 holds, and that {IA(zk)JI} is bounded. Then the weight has a fixed value p for all
sufficiently large k, and there is a neighborhood of x. such that if any iterate xko falls in
that neighborhood, with iAk. = Ai, then {xk} -- x,.. Furthermore

0.(xk+l) - -,(x.) _< rk_IO[OS(xo) - 0,(x.)], k > k0  (4.11)

for some constant r < 1, and

IlXk - X.I1 < 00. (4.12)
k=1

Proof: By Assumptions 4.1 there exists b, > 0 such that, for all x in the neighborhood
N1 = {x :11: - x.II < 6b}, Assumptions 3.1-1 and 3.1-2 are satisfied, and

IIA(x)lI + p > IIA... (4.13)

Also, by choosing 61 small enough we can guarantee (as in Lemma 2.1) that, if Xk and
Xk+l are in N1 and 4k satisfies (2.12), then Assumption 3.1-3 is satisfied.
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Now, since {IA(Xk)llo} is bounded, the procedure (2.27) implies that for all k greater
than some value k, Pk is fixed at some value M. By (4.13) and (2.27), if an iterate Xk,
with k > k, occurs in N, then it must be that p > jIA.joo. For such 1L it follows from
Lemma 4.2 that the function 0, has a strict local minimizer at x.. Therefore. there
exists 62 E (0, 61) such that if jjx - x.11 < 62, the connected component of the level set
{z : 0,(z) < ,(x)} containing x. is a subset of N, over which equation (4.8) holds.

Now Assumption 4.2 implies that if for some k0 > k, IlXk0 - X.11 < 62, then xk E -Vi
for all k > k0 , since 0,, is decreased at each step.

Thus we have that Assumptions 3.1 hold on N, for k > k0 , and we may identify Nj
with the set D of those assumptions, so that all of the results in Subsection 3.1 for the tj
merit function hold for k > ko. Therefore, if Bk0 is positive definite Bk remains positive
definite for all subsequent iterates, and by Theorem 3.1 there is a set of good iterates J.
From Lemma 3.3 and Lemma 4.2 we have, for all j E J, j> ko,

- 0(x,+i) > 0 u(X) - O(X..)], (4.14)
I4

and so ,.x+)- 4 (z.) < i's [€ (zj) - *(.]

where rt = 1 - 2 < 1. From Lemma 3.3 we see that 0,(Xk+l) < 0,(Xk) for all k, and
since J f [ko, k] has at least [5(k - ko)/61 elements, we have for all k > k0

0,(xk+1) - 0.(X.) < k-ko [0M(Xko) - 0.(X.)]

From this relation and (4.8) we obtain

00 ko o0

S1-k - X.l _ L Jjkl & - X.I1 + (73 )
- 112 1 [4,,(xk+)- , /2

k=1 k=1 k=koko r II 
o0~l

:5 Li k - X1 + -
k= 1 73r) k=ko

< 00.

It is possible to strengthen this result and show that there is a neighborhood of x. such
that if any iterate lands in the neighborhood, the sequence converges to x. R-Uinearly.
However the analysis of this result is much more complex.

Note that the local result of Theorem 4.3 fits together well with the global analysis
of Section 3.1. If Assumptions 3.1 hold for a set D which is in addition compact then by
Theorem 3.4 the sequence {Xk} will have a cluster point that is a stationary point. If this
stationary point satisfies Assumptions 4.1 then Theorem 4.3 implies that the sequence
will converge to it R-linearly.

For Fletcher's merit function one cannot show such a strong result since, as was
discussed in Section 3.2, there appear to be no assumptions on the problem that will
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guarantee {jk is bounded. However, if we make the optimistic assumption that the
sequence {Wk} defined by (3.28) is uniformly bounded, we may prove an R-linear conver-
gence result.

Theorem 4.4 Let {xk} be generated by Algorithm 2.1 using the Fletcher merit function
(2.20), with Vk chosen by (3.35). Suppose that x. satisfies Assumptions 4.1. that As-
sumption 4.2 holds, that the sequence {fk} defined by (3.28) is bounded, and that Vk is
eventually large enough to satisfy the conditions of Lemma 4.2. Then the weight has a
fixed value v for all sufficiently large k, and there is a neighborhood of x. such that if any
iterate Xko falls in that neighborhood, with Vk0 = V, then {xk} - x.. Furthermore

'D,(Xk+I) - D.,(x.) < rk-k[.D. ,o) - 'D.(x.)), k > k0  (4.15)

for some constant r < 1, and
00

E Ijxk - X.I1 < 0. (4.16)
k=1

Proof: By the assumed boundedness of {Pk}, the procedure (3.35) guarantees that the
weight vk is equal to some fixed value v for all k sufficiently large. Since we also assume
that eventually vk becomes large enough that (4.9) holds for some constants '"y and 76,
then Assumption 4.2 implies the sequence eventually stays in a neighborhood in which
Assumptions 3.1 hold. At this point Lemma 3.5 and Lemma 4.2 imply that

¢t(Xk) - 4t.(xk+)> [' (xk) -2L,(x.)]. (4.17)

This expression has the same form as equation (4.14) in the proof of Theorem 4.3. and
the result follows by the same argument, using equation (4.9) in place of (4.8).

0

It is interesting to note that, once R-linear convergence has been established, it follows
that jjBklI and JjB 11 are uniformly bounded (we prove this later in Theorem 5.1). Then,
by Lemma 3.6 we have that T7k is bounded. However, we know of no way to establish
the boundedness of 17k a priori, and thus give a proof of R-linear convergence of the
algorithm using the Fletcher function without making such optimistic assumptions.

5. Superlinear Convergence

We have shown in §4 that Algorithm 2.1 is R-linearly convergent. We now investi-
gate whether superlinear convergence occurs, under the assumptions of §4. In §5.1 we
discuss the relevant properties of the null space basis and give an attainable condition
which, as we show in §5.2, implies a consistency property of Bk yielding two-step super-
linear convergence, if steplengths of one are eventually taken at every iteration. For the
Fletcher function this implies superlinear convergence of Algorithm 2.1. as we show in
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§5.3. However with the tj function steplengths of one may be impossible even very close

to the solution. In §5.4-5 we consider two modified versions of Algorithm 2.1 and show

that they both overcome this difficulty and yield two-step superlinear convergence.

5.1 Choice of null space basis.

The results of §4 only require of the matrix Z that its columns form an orthonormal
basis for the null space of AT, i.e. that ATZk = 0, and ZjZk = I. However, this does

not completely specify Z, and if the choice of null space basis changes too much from

one iterate to the next, superlinear convergence can be impeded. Byrd and Schnabel

(1986) point out that any algorithm that chooses Zk as a function of A(xk) alone will

have discontinuities at some points. Coleman and Sorensen (1984) and Gill, Murray.

Saunders, Stewart and Wright (1985) consider this issue and suggest several procedures

for computing Z, based in part on information at previous iterates, which guarantee
that Z varies smoothly.

The approach of Coleman and Sorensen is to obtain Zk by computing a QR factoriza-
tion of Ak, in which the inherent arbitrary sign choices in the factorization algorithm are

made, if Ak is sufficiently close to Ak-1, the same way as they were done in computing

Zk-1 from AA,-,. If {xk} - x., then for k sufficiently large all the matrices Ak will be
close enough together that the same sign choices will be made at each step. Therefore, for

the rest of the sequence we have Zk = z(Ak) where z is a smooth function of n x (n - t)

matrices in a neighborhood of A(x.). This implies that there a constant a. such that

IIZk - z(--)il < a-lxl - X-..
Gill, Murray, Saunders, Stewart and Wright (1985) propose applying the orthogonal

factor of the QR factorization of Ak-1 to Ak, and then computing the QR factorization

of Qki 1 Ak to get Qk and thus Zk. They show that with this method

IlZk+1 - Z4 i_ allxk+l - Xk i,

for some constant a. If we consider the null space bases at two iterates zk and xj, with
j < k, we have

k-1

ifZk - Zjj < tiz+1 - Zill
2=J

k-1

If the sequence {xk} converges R-linearly, then the sum "ixj+j - xi1 is finite. There-

fore, we must have that IIZk - Zil - 0 as j and k go to infinity. This means that {Zk}

is a Cauchy sequence, and .ust thus converge to some matrix Z., which by continuity

satisfies A(z.)TZ. = 0. Therefore for the Gill, Murray, Saunders, Stewart and Wright
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procedure, as well as for the Coleman and Sorensen procedure, there is a constant a.
such that for all k

IlZk - Z.11 < a.llzk - X-II, (3.1)

where Z. is a particular null space basis for A(x.). As we shall show the condition (5.1) is
all that is required of the null space basis to give superlinear convergence of the reduced
Hessian algorithm.

5.2 Consistency of the Matrix Approximation

Since Algorithm 2.1 approximates only the reduced Hessian Gk, one cannot expect
it to be 1-step Q-superlinearly convergent. (See the examples of Byrd (1985) and Yuan
(1985)). However, results of Powell (1978) show that if {Xk} -- X-, if Ok = 1 at each
step, and if the matrices Bk satisfy

I(Bk - G,)skll - 0' (5.2)
Wk-Ilk+l - Xkl(

then Algorithm 2.1 is 2-step superlinearly convergent, i.e.

I _+2 - X_ -- 0. (5.3)
1Xk - X.11

In fact, Coleman and Conn (1984) prove that Algorithm 2.1, using the DFP update,
satisfies (5.2). Their arguments are based on the theory of Dennis and Mor4 (1977) and.
with some changes, apply to the BFGS method also. However, it is also possible to obtain
(5.2) using the techniques of Byrd and Nocedal (1987), as we now show.

Theorem 5.1 Suppose that Assumptions 4.1 hold at x., and that the iterates {Zk} gen-
erated by Algorithm 2.1, using any merit function, are contained in a neighborhood of x.
in which (4.1) - (4.3) hold. Furthermore assume that {xk} converges to x. R-linearly,
and that the matrices Zk satisfy (5.1). Then

liM Wk = 0,k--oo

and {IjBkIl} and {lnBk111} are bounded.

Proof: If k = 0 then Wk = 0. Ifsk 6 0, then we have from (4.3) and (2.18) that y4Tsk > 0.

Since hk < Ijxk+i - Xkjj, and since Qk < 1, we have for any r E [0, 1] that

II(jk + rckhk) - X.(1 __ IlekI + Ilzk+1 - xkjl _< 21ekli + 1Iek+1ll,

where ek =k - x.. Using this, (2.18), (4.2) and (5.1) we have

Ill k - G.skl _ II(?k - G.)s3kl
114 11 I!sk ll

< it max (llek+ii, IIekll),
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for some constant is. Due to the R-linear convergence, E', IiekIl < 00. We can therefore
apply Theorem 3.2 of Byrd and Nocedal (1987) to obtain (5.2), since IzXk+1 - Xk>I __ [[skit,
and to conclude that {jJBklj} and {iIBk'11} are bounded.

This theorem implies that, if Ok = 1 at each step, then the sequence {xk} converges
2-step superlinearly to x.. However, it turns out that with the 41 merit function (2.19)
even very close to x., a steplength of 1 may not satisfy the steplength condition (2.2) in
Algorithm 2.1. As pointed out in Chamberlain et. al. (1982) this "Maratos effect" can
slow the convergence rate. To ensure that eventually ak = 1 is used at each step some
slight modifications of Algorithm 2.1 must be made, when using the 11 merit function
. We discuss two of them, the correction step, and the watchdog technique in §5.4 and
§5.5. Before doing so we will show that these difficulties do not arise with Fletcher's
merit function.

5.3 Fletcher's Merit Function

Since this merit function is differentiable with a strong local minimizer at x., one can
show that for all sufficiently large k the algorithm accepts steplengths of 1, provided the
weight v is large enough. To show this and to establish the results of the next sections it
is useful to first prove the following technical lemma about the decrease in the Lagrangian
function produced by a single step of the algorithm.

Lemma 5.2 Suppose that Assumptions 4.1 hold at x. and that the matrices Zk satisfy
(5.1). If xk is sufficiently close to x., and if Wk defined by (5.2) is sufficiently small, then

jTIhklI - IIvkIl < IIZgkTgIf < 2MIhkII + IJvkII, (5.4)

and therefore

JldkII = O(lekII). (5.5)

Moreover, for any rq < I there exist constants jy and such that for ek and Wk sufficiently
small,

L(xk + dk, A) < L(xk, 1k) + r7gjhk - ?llZjkll2 + kIiCkII 2. (3.6)

Proof: Since sk = akZ'hk and Bksk = -0kZTgk, we have from the definition of ,ak

JIGh-F- 4Wk(JhkJ + lIVkUJ) k IZ'gkl < 1lG.lIlIhk1 + wk(~hkjI + [JVk-).

If wk is small enough, and using (4.3), we obtain (5.4). The left inequality in (5.4)
together with (2.9) and (4.1) give (5.5).

By Taylor's theorem

L(xk + dk, Ak) = L(Xk, Ak) + V.L(xk, A k)Tdk + 2dTV~rL(z, A)dk,
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where z =Xk+rdk for some r~ E (0. 1). Fromn(2.9) and (2.21) we have that VL(Xk, k )T Vk

0. Therefore, since the second derivatives of f and c are bounded near x.. we have by
(2.7) and (2.8)

L(xk + dk, Ak) L(xk,A gjk+ k 2 z, 3 kxk al~kI2~kI + IIVkII)
<L(Xk, Ak) +qgkhk

-(-7)h TZk:(Bk -G. )ZT h + hTjZTjk

+ h T,72 L(z, Ak)hk + a, ljVkII(2jjhkj + JI~VkI),

for some constant a,. From the definition Of Wk

llhTZI(Bk - G.)ZkhkII 5 jlh-1I(IjhA~j + llvklI)wk,

and therefore

L(Xk +d4, k) : L(Xk, Ak) + vgkjhk +(1 - 7)IlhkII(llhkI + IVkll)Wk
+1- 77)h TZk[ZT'Vz,Ak - G.]4jhk

- i7) hk r~zAk)hk + aijIVklj(2ljhkII + Ilt~klI). 57

Using (4.3), (5.5) and (5.1) we have

L(XTk + 4k, Ak) 5 L(zk, Ak) + 1?~hk + (1 - n)IjhklI(jjhkII + I~VkIl)Wk
+ 11lkI2 1lki - 1 12M

a~jjhkIlek~l- i)IIhk4

+ai IIvklI(2ljhklI + lIVklI),

for some constant a2. Thus if Ileki and wak are sufficiently small

L(Xk + 4, Ak) :5 L(zk, Ak) + 27gkjhk: - 7 7 )IIhk 112M + al IlVklI(3llhkII + I~Vk Ii). (5.8)
2 2

By the geometric/ arithmetic mean inequality,

IjhkIIIjvkIj Q' -a (7)-77)mj IaIVkI12

12a, 2 -7)

Substituting this into (5.8) we obtain

L(Xk + dk, A) :5 L(Xk, Ak) + k ~1hk - - ) m )-1h.11' + al + I IIVkII 2 .2 4 \ (1 -17)mJ
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From (5.4) we have that 1Ihk 112 > 4-1-(2UZkgkjI-IVkfI) 2 > 4 7 IZk 7 gk1P Ift'k112 . Using
this (2.9) and (4.3) we have

L(Xk + d, Ak) < L(xk, Ak) + gjhk - kIl~jgki2 + illCkI 2,

for some constants j and .

It is interesting to note from this result that the Lagrangian is decreased, unless the
term yljcklI2 is large. This term occurs because the point x. is not in general a local
minimizer of L(x, A.) but may be a saddle point; thus the vk component of the step
which decreases IIc(x)JI may actually increase the Lagrangian. This fact prevents the
Lagrangian from serving as a good merit function. It appears that a good merit function
must have a term which gives sufficient weight to decreases in the value of c(x), and it
can be seen that both merit functions considered here are equal to the Lagrangian plus
a term dependent on Ic1l.

Looking at the Fletcher merit function in this way and using Lemma 5.2 we can prove
superlinear convergence.

Theorem 5.3 Suppose that Assumptions 4.1 hold at x., and that Algorithm 2.1, using
Fletcher's merit function, generates a sequence {xk} which converges R-linearly to x..
Assume also that the matrices Zk satisfy (5.1). Then, if for all sufficiently large k the
weight has a fixed value v, which is large enough, the rate of convergence is two-step
Q.superlinear.

Proof: We only need to show that for all sufficiently large k the point Xk+1 = 
Xk + d

satisfies the line search condition (2.2), for Theorem 5.1 and the results of Powell (1978)
then imply (5.3).

By (5.5) we have that

ick+111 S ijck + ArdkII + O(ldkII 2) < a3lle/,1j, (5.9)

for some constant a3. Using this, (2.20), (5.6), (5.5) and (2.29) we obtain

tt(Xk+l) = L(Xk+s,Ak) + [L(Xk+l, k+l) - L(xk+1,Ak)] + vllck+1112

< L(.T,A) + T7grhk - 11ZrgkIll2 + illckl12 +

lj~k+l - AkIjijck+1jf + 'VjjCk+1iI2

5 't*(Xk) - 1/l1ck 2 + hk + dk Ak ck -VIjCk -7dTAkTck +

r71Ilckll - j,1Zrgkjj2 + i5'lIcki2 + a4l4ek I1.
< $(xk) + 7?D$O(Xk;dk) ,-77)V %1ck2 + llZ~rgkII2} +

a.577lek IlIjckI + a4I1ek113, (5.10)
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for some constants a 4, as. Using Lemma 4.1 and the geometric/arithmetic mean inequal-

ity (as in the proof of Lemr-a 5.2), we see that there is a constant a6 such that

a5r?7Iek1jIck~I _ a61jCk j' + jIZTg ll2,

from which one can show that, if v is sufficiently large, as57jjekjjjckI is less than half the
term inside the curly brackets. Also, if Ilekll is sufficiently small, we have from Lemma 4.1
that the last term in (5.10) is less than half the term inside the curly brackets. Therefore

4*,(Xk+i) :5 ,( xck) + TD4,,( k; dk),

and the unit steplength is accepted by the algorithm.

5.4 The Second Order Correction Technique

Since the difficulty with the tj merit function is caused by the nondifferentiability of
the term jjc(x)ljj, a very simple measure is to add to the step a correction of the form

wk = -Ak(ATAk)-'c(xk + dk).

This is very similar to strategies proposed by Coleman and Conn (1982), Fletcher (1982),
Gabay(1982) and Mayne and Polak (1982) to deal with this problem. The effect of this
correction step, which is normal to the constraints, is to decrease the quantity 1Ic(a)I so
that it is of the order of llekI 3. This means that the merit function will then be decreased
at the point Xk + dk + wk, as we will show.

We therefore consider the following variation of Algorithm 2.1.

Algorithm 5.1
The constants 77 E (0, 1) and r, r' with 0 < r < r' < 1 are given.

(1) Set k = 1 and choose a starting point x, and a symmetric and positive definite
starting matrix B 1.

(2) Compute dk as the solution of the quadratic program (2.1)

(3) Set ak = 1.

(4) If

0u(Xk + akdk) _ ¢ (Xk) + akDOC(xk;dk), (5.11)

set xk+l = z, + Qkdk and go to (8).

(5) If (5.11) does not hold and if Crk < 1 go to 7.

29



(6) Compute
Wk = -Ak(A AA)-Ic(xk + dk). (5.12)

If
,(xk + d + k) <5 ,(xk) + iD4 (Xk;dk) (5.13)

holds, set Xk+ = xk + dk + wk and go to (8); otherwise go to (7).

(7) Choose a new 0 k in [rTk, r'ak] and go to (4).

(8) Update Bk using the BFGS formula (2.6).

(9) Set k := k + 1, and go to (2).

We will show that after a finite number of iterations backtracking is never needed.
i.e. the step taken by this algorithm is either xk+l = Xk + dk or Xk+I = Xk + dk + Wk,
which will imply superlinear convergence.

First we need to verify that Algorithm 5.1 is locally R-linearly convergent. This is
easy to do, because Algorithm 5.1 differs from Algorithm 2.1 only if the step is accepted
by (5.13), and this test enforces a sufficient reduction in the merit function. To show
that Theorem 4.3 applies we only need to consider an iteration such that j E J and
Xj+j = x7 + dj + wj. From (5.13) and (3.16) we see that (3.17) holds, and the proof of
Theorem 4.3 applies without change. Therefore Algorithm 5.1 is R-linearly convergent.

Now we argue that Theorem 5.1 also holds for Algorithm 5.1. We consider an iteration
for which the second order correction is used: xk+ = xk + dk + wk. Then

IIwkII < Ilek+1l1 + liekil, (5.14)

due to the orthogonality of wk and dk. Proceeding as in the proof of Theorem 5.1 (except
that Ok = 1) we have Xk + hk = xk+I - Vk - Wk, and therefore using (5.14) and (4.1)

lXk + hk - X.11 - Ilek+11I + joltekll + Ilek+ 11 + Jek j.

The rest of the proof is identical to that of theorem 5.1. Therefore we know that for
Algorithm 5.1 condition (5.2) holds and that the matrices Bk and their inverses are
bounded.

We now show that after a finite number of iterations backtracking is never needed.

Theorem 5.4 Let Assumptions 4.1 hold at x.. If xk is sufficiently close to x. and k,
defined by (5.2), is sufficiently small

0,,(Xk + dk + W) < 0,(xk) + 7DO(xk; dk)

Proof: From (5.12), (4.1) and (5.9) we have

I1WkI = O(Ile112). (5.16)
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Since VZL(Xk,Ak )T Wk = 0, and using (5.5), we have

L(Xk +dk+ Wk, Ak) -L(Xk +dk, Ak) = VL(Xk +dk +rwk,k )T Wk
= VrL(Xk, Ak)T Wk +

O(II4k + rWklIIIWkII),
= O(IlekfI3), (5.17)

for some r E (0, 1). Similarly

C(Zk + 4k + Wk) = C(Xk + 4k) + A~jk + J [A(Xk + dk + rWk) - -4k] u'kdr.

Since the first two terms on the right hand side cancel, we have from (5.16) and (5.3)

I1c(xk + dk + WOkIJ = O(IIekII'). 5.8

Now

0.(Xk + dk+ Wk) = f(k + d,+ Wk) + Tc(Xk + k+ Wk) + AIC(Xk + d+ W0)1

_ATjc(xk + 4k + WO)

<5 L(X + dk +Wk,Ak) + (A'+ Ii~kik)Iic(xk) +dk +Wk)lI
< L(Xk + 4k + Wk, Ak) + O(IlekI113) (5.19)

Using (5.17), (5.6) and (2.26)

0,L(xk + dk + WO) L(Xk + 4k, Ak) + O(IlekI113)

< L(zk, A&) + ighk- !jjZTgkfI 2 + illCkI112 + O(Ileki11)

= )fk + A.jICkjIl + .WjCk - 4~l+ 17gj~hk -IZ 12

+vjjCk 112 + O(Iiekli3)
- ,(Xk) + 17 [gkjhk + kCk - 1111411l 1 -~

-(1 - 77)/Atck11 - !IIZkiI2jj + iIjckJI2 + O(IlekIj3)
- ,I(Xk) + i7DO,,(Xk; dk) - (1 - 77)PIlCkil ~?IjkI +k

YilCkI112 + O(IlekII').

Assuming that lickli :5 (1 - 77)p/(2j), we have

0,.(Xk + dk + Wk) 5 0,(Zk) + DO,(Z-k; dk) -{j (i - ?7)PiickjII + IIZT gkII2} + O(jjekIj').

By (4.4), if lieji is sufficiently small, the last term is smaller in magnitude than the term
inside the curly brackets.

Now we need to show that Powell's condition (5.2) implies 2-step Q-superlinear con-
vergence also for Algorithm 5.1. if for all large k backtracking is not used.
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Theorem 5.5 Suppose that Assumptions 4.1 hold at x., and that Algorithm 5.1, gen-
erates a sequence {Zk} which converges R-linearly to x.. Assume also that the matrices
Zk satisfy (5.1). Then the rate of convergence is two-step Q-superlinear.

Proof: Since we have shown that the matrices Bk and their inverses are bounded, Theo-

rem 4.1 of Nocedal and Overton (1985) gives

1xk-,I +dk_, - x.11 < C, 1ek-,11 (5.20)

for some constant C1 . Note also that by (5.9)

I1c(xk-1 + dk-.)[J _< a3iek-[1I'. (5.21)

Now, if the second order correction is used at step k - 1, by (5.16) it satisfies IIwkl I =
O(Ilek.1112 ). Therefore regardless of whether the correction step was used we have from
(5.20) and (5.21) that

ljekll -O(Ilek,-1 ) (5.22)
and

jlCkjl _< O fllek _1 l') . (5.23)

Now Lemma 6 of Powell (1978) implies that for any step on a quadratic program of the
form (2.1) at Xk, under Assumptions 4.1, we have

Ilxk + dk - X-11 _< 0(llckIl + 0(ljdk112) +

O(llZk[Gk - Bk]Zk'dk)

< 0(0l'41) + 0(llekIl2) + 0(wokjldkII)
< O(ile,-Ill1) + O(Wllek-1l),

by (5.5), (5.22) and (5.23). If the second order correction is used at Xk then by (5.16)

IIwkII = 0(iek 112) = 0(iJekI 112), so that whether a correction step is taken or not,

I1ek+1I < 0(ilek-.11 2) + O(Wkilek-1II). (5.24)

Since we have shown that wk - 0, we conclude from (5.24) that

llek,+111/l1ek-,ll - 0.

0
It is interesting to note that, if the correction step is tried at every iteration, the result

of Byrd (1984) applies, giving a better convergence rate for the sequence { k + dk1.

Theorem 5.6 Consider a modification to Algorithm 5.1 such that, at every iteration,
wk is computed and if (5.13) holds then xk+l = Xk + dk + wk. For this iteration, un-
der the conditions of Theorem 5.5, the sequence {xk + d) converges to x. one-step
Q-superlinearly, that is

xk+-- 0. (5.25)
llZk + dk - -. 2

32

MMUMM00



Proof: By Theorem 5.4, for k sufficiently large a full corrected step is taken so that
Xk+= Xk + dk + Wk. The iteration is then equivalent to Algorithm 3 discussed by
Byrd (1984) with the full Hessian approximation of that algorithm given by ZkBkZ[.
By Theorem 3.5 of that paper, since R-linear convergence implies boundedness of the
Hessian approximations, (5.25) holds .

5.5 The Watchdog Technique

To avoid the inefficiencies caused by the Maratos effect, Chamberlain et al (1982)
propose to sometimes accept the unit steplength even if this results in an increase in the
11 merit function. They call this a "relaxed step". However if after i steps a sufficient
reduction has not been obtained, they go back to the iterate where the relaxed step was
performed. We now describe a special case of this watchdog algorithm in which t = 1. For
simplicity we will assume that the matrix is updated at each iterate along the direction
moved to reach that iterate, even though in practice it may be preferable not to do so
at certain iterates that will be rejected. We note that an update at xk+1 is always done
using information from the immediately preceeding step Xk+1 - xk. The algorithm uses
the t, merit function with the weight /k adjusted by (2.27); however in the description
that follows we omit the subscripts of 14, for simplicity.

Watchdog Algorithm

The constant 77 E (0, 1) is given.

(0) Choose a starting point zx and a symmetric and positive definite starting matrix
B1 . Set k := 1 and let S = {1}.

(1) Compute Xk+1 = Xk + dk, where d is the solution of (2.1). Update Bk by means
of (2.6) to obtain Bk+l.

(2) Test the condition
t,(xk+l) !5 $,(xk) + q7DO,(Xk; dk). (5.26)

If (5.26) holds, set k := k + 1, S = S U {k}, and go to (1).

(3) Compute Xk+2 = xk+1 + ak+ldk+1, where dk+1 solves (2.1) and Ck+l is such that

0(xk+2) < 0,(Xk+l) + ?77Ck+l DO,(xk+l; dk+l). (5.27)

Update Bk+1 to get Bk+2.

(4) If
O( k l __. O(Xk) (5.28)

or

0,(Xk+ 2 ) 5 0,(Xk) + irDO,(Xk; dk). (5.29)

set k := k + 2, S = S.J {k}, and go to 1.
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(5) If Q(Xk+2) > 0,(Xk) compute xk+3 = Xk + akdk, where ak is such that

-0,(Xk+3) < ,(Xk ) + r1akDo,(Xk; d). (5.30)

If ,(xk+2) < (,(xk), compute dk+2 by solving (2.1), let Xk+3 = Xk+2 + ok+2dk+2.
where 0 k+2 is such that

@(P,(Xk+3 ) _< 0(xk+2) + rlak+2DO,(xk+2; dk+2). (5.31)

Update Bk+2 to get Bk+3, set k := k + 3, S = S u {k}, and go to 1.

The set S is not required by the algorithm and is introduced only to facilitate the
analysis. It identifies the iterates for which a sufficient merit function reduction was
obtained. Note that -t least one third of the iterates have their indices in S.

For this algorithm it is possible to establish the R-linear convergence of the iterates
in S, that is the set of iterates that satisfy a sufficient decrease condition. However the
Watchdog Algorithm updates Bk at every iteration, and in order to conclude that wk - 0
we must have that

00

Ikk+l - x.II < OC.

k=0

where the sum is taken over all the iterates. It appears to be possible that when Bk is
updated in step (1) at a point Xk+i that fails the test (5.26), zk+1 may be much farther
from the solution than Xk, so that updating along d will move Bk, 1 away from the true
Hessian. To avoid this difficulty and ensure R-linear convergence of all the iterates we
now change the algorithm so that a point xk+1 that fails to satisfy (5.26) is accepted only
if it satisfies

jZk+lgk+1ll + jc1k+1jI < 2( lzkgkjj + fjCkji), (5.32)

where the factor 2 is an arbitrary parameter. Otherwise, we do a line search and revoke
the update of step (2). In the Watchdog Algorithm this amounts to adding the following
after step (2).

(2a) If (5.26) does not hold, and (5.32) is not satisfied then compute a such that

0,(xk + adk) < 6,(xk) + r7oD0,(xk; dk), (5.33)

update Bk to get Bk+l, set Xk+ = k + adk, k := k + 1,S = Su {k}, and go to 1.

For this modified algorithm we are able to prove R-inear convergence of the entire
sequence.

Lemma 5.7 Let {xk} be generated by the Watchdog Algorithm using the additional step
(2a). Suppose that x. satisfies Assumptions 4.1, and that for all k greater than some
index ko, the weight Pk has constant value p and the iterates Xk are contained in a
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neighborhood of x. for which Lemma 4.2, and (4.1)-(4.3) hold. Then {Xk} - x. and
there exists r < I and as such that for any k > ko

,(xk) - 0,(x.) < asrk - ko (5.34)

Therefore

IIXk+1 - X.II < 00, (5.35)
k=o

and Wk - 0.

Proof: Let S = {11,12, ... }. From (5.26), (5.29), (5.30) and (5.31) we see that for any
li > 0 there is an integer ji such that 1 < ji < li - li-I 5 3, and such that

0,(xl,) S 0u(xl,-j, ) + 7oaDOu(xj,-j, ; di,-j,), (5.36)

where a is a steplength computed by the algorithm. We also see that the inequality

¢.(z _ ,) ¢ (z,_, )(5.37) -!

holds for ji.
Now suppose li-ji E J so that (3.16) holds. Either a = 1 or a backtracking linesearch

was done along d,-1 ,. to determine a, and in either case the arguments in the proof of
Lemma 3.3 together with (5.36) imply that

( < ( l ,- ,- 2 + Ii . (5.38)

for some constant y'. Now (5.38) together with (4.8) and then (5.37) imply

€.( )-€. .)< *0 [¢ (ztj,) -¢.x)

< ,(5.39)

where r= 1 - -L < 1. Theorem 3.1 implies that J n1 [1, k] contains at least lk iterates.
"€46

that is (1, k] contains at most g elements not in J. Therefore ISnJnfl1, k]I > Sn(1, k]j -'
The structure of the watchdog procedure implies that i < IS nl [1, k]l so that

IS n J n (1, k] I >- IS n (1, k~j.

Therefore (5.39) holds for at least half of the elements in 5, and since {¢u(xi,)} is a

decreasing sequence, we have that

S- ¢.(x.) < rf-[(xi) - t.(x.)] (5.40)

holds for all k E S.
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Now we will show that step (2a) ensures that (5.34) holds for all the iterates. To
show this we divide the iterates into three groups: (i) S: (ii) S, = {k 5: k - I E j
(iii) S2, the set of indices of the remaining iterates; (note that if k E S2 then k - 1E Si .
Now if k E S. we have from (5.40) that (5.34) holds. If k E SI is large enough, we have
from (4.8). (35.32). (4.4), again (4.8) and (5.40)

6,X)- 6,(X-) : 'Y4[IIZkg,II + lICkillj
< 2-14jIIZ!Igk-1.II + Ilck-I!I1]

< 2 Y4Yf2(( ) -1

< 27 4 12  02(5.1

so that (5.34) is satisfied for r > VI- and a8 > o '~rJ(O(xi 5,I(x.))2 If k E S2

then 0,(Xk) < 4txkI and Xk-1 E SI, which gives (5.34) for some r less than 1.
We obtain Z~'( I~+ - X-11 < oo as in the proof of Theorem 4.3. The condition

-k- 0 is proved as in Theorem 5.1.
Cl

Theorem 5.8 Let Assumptions 4.1 hold at x. and assume that the sequence {Xk} gen-
erated the W~atchdog Algorithm converges R-linearly to x.. Then for all sufficiently large
k the steplength is ak = 1, and the rate of convergence is 2-step Q-superlinear.

Proof: Consider an iterate Xk at step (1) of the Watchdog Algorithm. The algorithm
then sets Xk+l = Xk + 4, and if z,,.I satisfies the sufficient decrease condition in step
(2). then it is accepted and the algorithm goes back to step (1). Thus in this case the
algorithm loops using afk = 1.

Let us now assume that the sufficient decrease condition is not satisfied at Xk+l.- We
will show that, if eA and wA: are sufficiently small, then Xk+l will satisfy the test (5.32).
We then show that the line search, which will be made in step (3), will set a =1. and
then in step (4) either (5.28) or (5.29) will be satisfied. Thus Xk+ and Xk+-7 will both be
accepted with steplengths of 1.

To do this we first note that, since {A,,} is bounded. there is a constant y such that
A4 + fIIoc < j'. Also, since 4k is generated by (2.1). we apply Lemma .5.2 to obtain

1;5,,Xk~l L(z,,+l, ,) + pIIC,+uI I - Ak'C,+i

: L(--,,A,) + kg h, k- kI + yIjC,,i12 + IjC,,+x III
=fk + 4Tc + T,[g + 4 TCk -P~k~]-~jZgj jc,

+thjck~ -. jcI1 rAgjc,, + IIc,+i

0,J~Xk) + rjDtO,,: d) gkII' + lIjC,,lI
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+( 1- 7) Ak - l lI !ICk+l III

< 0,(xk) + ?D(p(Xk:dk) - "lIZjgkIf2 + P(yicklI- PO( - )]IckjI1

+ j Ck+,III.

Thus for k large enough we have

6,(Xk+l) _ ¢,,(Xk) + nD6,d(xk;dk) - k 9ZgIH - 'p(1 - r7)IIckIIl + -,lICk+1Ij. (5.42)

Since we assume that the sufficient decrease condition failed from Xk to Xk+I.

0.(Xk+l) > 0,(Xk) + r7D¢,(Xk; dk),

which together with (5.42) implies

- 1lzrajgIl2 - 1p(1 - ?)IckII + Ijlc+,lIII > 0. (5.43)

Using (5.9) this implies there exists a constant ys such that

IIlCkl !_ 1511ek 11 (.5.44)

whenever Xk+1 does not satisfy (5.26). Now Lemma 6 of Powell (1978) implies that for
any step on a quadratic program of the form (2.1), under Assumptions 4.1, we have

IXk + dk - X-11 - O(lICkII) + O(lldk2) + O(wklldkll), (5.45)

which together with (5.5) and (5.44) implies that

Ijek+IIl 5 O(Ie 112) + O(WkIIekII), (5.46)

when (5.26) is not satisfied. Since, by Lemma 4.1 IIekII and IIzrgkII + IlckI are of the
same order, this relation implies that (5.32) will be satisfied for sufficiently large k. since
,:k - 0.

Now we must show that the step length in the direction dk+l will be one. which
happens if

0,(Xk+l + dk+,) < Og(xk+l) + 7Dd{Xk+l; dk+l). (5.47)

To do this apply (5.42) to the step from Xk+1 to Xk+1 + dk+I:

-,(Xk+l + dk+I) _< 6.(Xk+l) + iD-(Xk+l;dk+I) - llZTjgk+1l 2

-jP( 1 - 1)14+111, + 1lc(Xk+1 + dk+,)I,. (5.48)

Now note that by (5.9) and (5.46)

Ilc(Xk+I + dk+I)ll < O(llek+1I f) __ O(leklf2 (lIIekI + Wk )2 ). (5.49)
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Note also that by (5.43) and Lemma 4.1

IjCk+1 Iii > = [ WIZgkII2 + 1p(1 - 771fCkll g~kI2j50

for some constant a9 . Together, (5.49) and (5.50) imply that the sum of the last three
terms in (3.48) is negative, and (5.47) follows.

Now we consider step (4) of the algorithm. If Q(Xk+i) :5 Q(X,) then Xk+2 is accepted
and we are finished. Otherwise, we need to show that

0,(Xk+l + dk+l) Q(PXk) + Y7DO,(Xk; dk). 5.1

Using Lemma 5.2

0(Xk+l + dk+l) f(Xk+l + dk+1) + 4cXk+1 + dk+l) + UIIC(Xk 4 l + dk+1t1
-4TC(Xk+1 + +)

<L(Xk~ + dk+l, k) + 1c(Xk+l + dk+l)jj

L(Xk, k) + [L(Xk+l, Ak) -L(Xk, k)]

+ [L(Xk+l + dk+l, Ak) - L(Xk+l, Ak)]

+ilC(Xk+l + dk+1 )111
<L(Xk, Ak) + i~hk k gIIZ ' + ittCkIl2

+ [L(Xk+l + dk+l, Ak+l) - LX~, ~~

+ [L(Xk+l + dk+l, k) -L(Xk+l + dk+, Ak+i)1
_ [L(Xk+l, k) - L(xk+l, Ak+i)] + I1c(Xk+i + dk+1)111 .

Applying Lemma 5.2 once more

&,(X~ + dk~l) :5 -,(Xk) + kCk - MAIIJkII + 1 + k kC - .4I1c4111

k kj + YIlCkII2 - ik(ck - 11114111l)

+ ?gjk+ - WkZj~+ 1111 + iIlCk+1 112

+lI k+i - Akljoo(IC(Xk+1 + dk+l)lll + IICk+:, 'il) + 'jjC(Xk+i + dk+1 )1!
5 6,(Xk) + t7D(.X; dk) - (1 - ?7)(PIjCkjj1 - 4~kCk)

kgj + iliCkil + 'i1Ck+1lj 2

+II1\k+l - AkIjoo(IIC(Xk+1 + dk+1I + I1C&:+i Ii) + fI1C(Xk+i + dk+1 ~

since both terms inside the curly brackets are non-positive. By (5.9) I1ck+1II = O(IjekII)2.
and by (5.49) (IIc(Xk+1 + dk+i)I1) = (I1ekII 2). Therefore

0(Xk+l + dk+1) :5 0,(Xk) + 77DO,(Xk; dk) - P(l - 0114111I k 9flk11' + ;c 2

+o00lekjl2) (.2



For k sufficiently large, -p(1 - )llcklii + flckl 2 < - p(l - 04)llckll. Therefore the sum
of the last three terms in (5.52) is negative, since by Lemma 4.1, - IfIZT.g 11

2 + - p1 -

?)lckj1 is of magnitude ek112 . This establishes (5.51).

13

6. Summary and Conclusions.

We have studied the convergence properties of reduced Hessian successive quadratic
programming, using the updating procedure of Coleman and Conn, and a backtracking
line search. We have considered the effect of two merit functions: the tj and the Fletcher
functions. Our work differs from previous studies of these methods in that we have made
no assumptions about the quasi-Newton matrices other than that the initial matrix is
positive definite.

We now summarize, in general terms, the main results of this paper, considering the
e1 merit function first. In section 3 it is shown that if the iterates are contained in a
convex set in which the problem satisfies some smoothness and regularity conditions, and
in which Sk and k satisfy (2.16) and (2.17) then liminfk-,oo,(I[Z kgk[ + lick l) = 0.

The local results proved in section 4 are somewhat stronger. If a local minimizer
is a regular point satisfying the second order sufficiency conditions and if {Il)(xk)jI} is
bounded, then there is a neighborhood of the minimizer such that if an iterate xk lands
in that neighborhood with k sufficiently large, the sequence converges to that minimizer
R-linearly. The assumption that ({IA(xk)II} is bounded is stronger than we would like,
but follows from a regularity assumption on the constraints and thus meshes well with
the global theory.

To obtain a superlinear rate of convergence we first impose some conditions on the
choice of the null space basis Zk, which are fairly easy to enforce in practice. Then.
due to the difficulties associated with the Maratos effect, we are forced to make some
modifications to the algorithm in section 5. Use of either modification ensures that
steplengths of one are taken near the solution, but requires some extra cost in terms of
function evaluations. One is to add a second order correction step to the iteration and
the other is a variant of the watchdog technique. We show that both modifications retain
the original local and global convergence properties and guarantee two-step Q-superlinear
convergence. In addition we show that if the second order correction is in effect at every
step, the sequence Xk + dk converges one-step Q-superlinearly.

For reduced Hessian methods using the Fletcher merit function similar global and local
properties are proved in Sections 3 and 4, but only by making additional assumptions on
the boundedness of Bk'. These a priori assumptions on the behavior of the algorithm
are needed to guarantee the boundedness of the merit function weights, and the need
for them makes the convergence theory in sections 3 and 4 significantly weaker for this
merit function than for the tj function. However, in section 5 we show that when the
Fletcher function is used, no modifications are necessary to ensure steplengths of one. It
is then easy to show, under the same conditions on the null space basis, that the rate of
convergence is two-step superlinear.
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We believe that this paper, at least in the local and superlinear sections. provides a

realistic and informative analysis of the behavior of reduced Hessian successive quadratic
programming in a practical implementation. We think that similar analysis should be
possible when the update studied by Nocedal and Overton is used. and we hope that it
will prove possible to analyze full Hessian SQP in a similar fashion.

40



References

P. T. BOGGS AND J. W. TOLLE (1984), A family of descent functions for constrained
optimization. SIAM J. Numer. Anal., 21, pp. 1146-1161.

P. T. BOGGS AND J. W. TOLLE (1985), Extensions to the theory and efficient utiliza-
tion of a merit function for nonlinear programming, Technical Report 85-5. Curriculum
in Operations Research and Systems Analysis, University of North Carolina. Chapel Hill.

R. H. BYRD (1984), On the convergence of constrained optimization methods with accu-
rate Hessian information on a subspace, Report CU-CS-270-84, Department of Computer
Science. University of Colorado, Boulder, Colorado 80309.
R. H. BYRD (1985), An example of irregular convergence in some constrained optimiza-
tion methods that use the projected Hessian, Math. Programming, 32, pp. 232-237.
R. H. BYRD AND R. B. SCHNABEL (1986), Continuity of the null space basis and con-
strained optimization, Math. Programming, 35, pp. 32-41.

R. H. BYRD AND J. NOCEDAL (1987), A tool for the analysis of quasi-Newton meth-
ods with application to unconstrained minimization, Tech. Mem. 103, Mathematics and
Computer Science Division, Argonne National Lab., to appear in SIAM J. Numer. Anal.

R. H. BYRD, J. NOCEDAL AND Y. YUAN (1987), Global convergence of a class of quasi-
Newton methods on convex problems, SIAM J. Numer. Anal, 24, pp. 1171-1190 .
R. M. CHAMBERLAIN, C. LEMARECHAL, H. C. PEDERSEN AND M. J. D. POWELL
(1982), The watchdog technique for forcing convergence in algorithms for constrained op-
timization, Math. Programming Studies, 16, pp. 1-17.
T. F. COLEMAN AND A. R. CONN (1982), Nonlinear programming via an exact penalty
function: global analysis, Math. Programming, 24, pp. 137-161.
T. F. COLEMAN AND A. R. CONN (1984), On the local convergence of a quasi-Newton
method for the nonlinear programming problem, SIAM J. Numer. Anal., 21, pp. 755-769.
T. F. COLEMAN AND D. SORENSEN (1984), A note on the computation of an orthonor-
mal basis for the null space of a matrix, Math. Programming, 29, pp. 234-242.

J. E. DENNIS, JR. AND J. J. MoRi (1977), Quasi-Newton methods, motivation and
theory, SIAM Rev., 19, pp. 46-89.
R. FLETCHER (1970), A class of methods for nonlinear programming with termination
and convergence properties, in Integer and Nonlinear Programming, J. Abadie, ed., North
Holland, Amsterdam.
R. FLETCHER (1973), An exact penalty for nonlinear programming with inequalities.
Math. Programming 5, pp. 129-150.

R. FLETCHER (1982), Second order corrections for nondifferentiable optimization, in Nu-
merical Analysis, Lecture Notes in Mathematics 912, G.A. Watson, ed., Springer Verlag,
Berlin.
P. FENYES (1987), Partitioned quasi-Newton methods for nonlinear equality constrained
optimization, Ph.D. dissertation, Department of Computer Science, Cornell University.
R. FONTECILLA (1988), Local convergence of secant methods for nonlinear constrained
optimization, SIAM J. Numer. Anal. 25, pp. 692-712.
D. GABAY (1982), Reduced quasi-Newton methods with feasibility improvement for non-

41



linearly constrained optimization, Math. Programming Study, 16. pp. 18-44.
3. C. GILBERT (1987), Maintaining the positive definiteness of the matrices in reduced
Hessian methods for equality constrained optimization, IIASA Tech. Rep. WP-87-123.
Laxenburg, Austria.
P. E. GILL, W. MURRAY, M. A. SAUNDERS, G. W. STEWART AND M. H. WRIGHT
(1985), Properties of a representation of a basis for the null space, Mathematical Pro-
gramming, 33, pp. 172-186.
S.T. GLAD (1979), Properties of updating methods for the multipliers in augmented La-
grangians, J. of Optim. Theory and Applications 28, pp.135-156.
S. P. HAN (1976), Superlinearly convergent variable metric algorithms for general non-
linear programming problems, Math. Programming, 11, pp. 263-282.
S. P. HAN (1977), A globally convergent method for nonlinear programming, J. Optim.
Th. and Appl., 22/3, pp. 297-309.
D. Q. MAYNE AND E. POLAK (1982), A superlinearly convergent algorithm for con-
strained optimization problems, Math. Programming Studies, 16, pp. 45-61.
W. MURRAY AND M. H. WRIGHT (1978), Projected Lagrangian methods based on the
trajectories of penalty and barrier functions, Systems Optimization Laboratory Report
78-23, Stanford University.
J. NOCEDAL AND M. L. OVERTON (1985), Projected Hessian updating algorithms for
nonlinearly constrained optimization, SIAM J. Numer. Anal., 22/5, pp. 821-850.
M. J. D. POWELL (1976), Some global convergence properties of a variable metric algo-
rithm for minimization without exact line searches, in Nonlinear Programming, SIAM-
AMS Proceedings, Vol. IX, R.W. Cottle and C.E. Lemke eds., Society for Industrial and
Applied Mathematics, Philadelphia.
M. J. D. POWELL (1978), The convergence of variable metric methods for nonlinearly
constrained optimization calculations, in Nonlinear Programming 3, 0. Mangasarian, R.
Meyer and S. Robinson, eds., Academic Press, New York and London, pp. 27-63.
M. J. D. POWELL (1987), Methods for nonlinear constraints in optimization calculations.
Proceedings of the 1986 IMA/SIAM Meeting on "The State of the Art in Numerical
Analysis", Clarendon Press, Oxford.
M. J. D. POWELL AND Y. YUAN (1986), A recursive quadratic programming algorithm
that uses differentiable exact penalty functions, Mathematical Programming, 35/3 pp.265-
278.
R. A. TAPIA (1977), Diagonalized multiplier methods and quasi-Newton meth ods for con-
strained optimization, J. Optim. Theory. Appl. 22, pp 135-194.
Y. YUAN (1985), An only 2-step Q-superlinear convergence example for some algorithms
that use reduced Hessian approximations, Math. Programming, 32, pp. 224-231.

42



Unclassified

SECURITY CLASSIPoCATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
I&. REPORT SECURITY CL.ASSIFICATION tL. RESTRICTIVE MARKINGS

Unclassiid_______________________
2s, SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILAIILITY OF REPORT

____________________________________ Approved for public release;
2b, OGCL.ASIPICATION/OOVMGRAOING SCHEDULE distribution unlimited

4. P4RPORMING ORGANIZATION REPORT NUMB1ER(S) S. MONITORING ORGANIZATION REPORT NUMBERIS)

CU-CS-398-88

Ba& NAME OP PERFORMING ORGANIZATION 111 OFFICE SYMBOL 7a. NAME OP MONITORING ORGANIZATION

University of Colorado IAir Force Office of Scientific Research/NM

G& ADDRESS fCIty. State and ZIP Cde 7b. ADORE=S (City. SOanmd ZIP Cadut

Campu BoxB-19Building 410
Camusdr BO B009 Boiling Air Force Base

BoulerCO 8309Washington, DC 20332-6448

B.. NAME OP FUNOING/SPONSORING O6b. OFFICE SYMBOL 9. PROCUREMENT IN4STRUMENT IDENTIFICATION NUMBER
ORGANIZATION j (If e"16bI) AFOSR-85-0251

B.. AOORES (City. Stat, and ZIP Cadet I0. SOURCE OP PUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. No.

11. TITLE fIauiude Security Clegmifestoon)

An Analysis of Reduced Hessian Methods for ______ ________________

32. PERSONAL AUTHOR(S) Constrained Optimization Richard H. Byrd and Jorge Nocedal

13&. TYPE OP REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr... MWo.. Day) 15. PAGE COUNT

Technical P ROM 87/09/01 T089/08/3 88/08/31 43

16. SUPPLEMENTARY NOTATION

17. COSATI COOlS 114. SUBJECT TERMS (Coan.g on reuavb fftenc~amT and identify by black niberS

PIELO GROUP SUB. GR. Constrained optimization, reduced Hessian methods, quasi-

Newton methods, successive quadratic programing, nonlinear

19. ABSTRACT (Caotia an sonorm it necein# and identify by blackl numbart

We study the convergence properties of reduced Hessian successive quadratic pro-
gramming for equality constrained optimization. The method uses a backtracking
line search, and updates an approximation to the reduced Hessian of the Lagrangian
by means of the BFGS formula. Two merit functions are considered for the line
seach: the A function and the Fletcher exact penalty function. We give conditions
under which local and superlinear convergence is obtained, and also prove a global
convergence result. The analysis allows the initial reduced Hessian approximation
to be any positive definite matrix, and does not assume that the iterates converge,
or that the matrices are bounded. The effects of a second order correction step,
a watchdog procedure and of the choice of null space basis are considered. This
work can been seen as an extension of the well known results of Powell (1976) for
unconstrained optimization to reduced Hessian methods.

2Q. OISTRIBUTION/AVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIPIROIUNLIMITIEO SAME1 AS APT. 0 OTIC USERS 0 Unclassified

221L NAUI OP RESPONSIB1LE INOIVIOUAL 22h. TELEPMON4E NUMBER 22C. OPFICE SYMBOL

Brian W. Woodruff, Major USAF 202/767-5025

DO FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. Unclassified
SECURITY CLASSIFICATION OP THIS PAGE



Unclassified

suCURITYv CL.ASSIFICATION OP THIS PAGE Ol
REPORT DOCUMENTATION PAGE

to. IEPORT 59CUIRITY CLASSIFICATION 11b. RESTRICTIVE MARKINGS

Unclassified_______________________
2&. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONIAVAILABILJTY OF REPORT

Approved for public release;
2. OECLASSIPICATION/OOWNGRAOING SCHADULE distribution unlimited

s, peRFORMINtG ORGANIZATION REPORT NUMIBERIS) 5. MONITORIN4GORGANIZATION REPORT NUMSER (S)

CU-CS-398-88 h~b ;q4A23-1-M)
G&, NAME OF PEAFORMI1NG ORGANIZATION bs, OFFICE SYMBOL 7s. NAME OP MONITORING ORGANIZATION

University of Colorado U.S. Army Research Office

Be. ADDRESS 'CitY. Stat. OW ZIP Code) 71L ADDRESS (City. $SOt aind ZIP Codei

Campus Box B-19 Post Office Box 12211
Boulder, CO 80309 Research Triangle Park, NC 27709-2211

Sm. NAME OF FUNOING/SPONSORING 81b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

I DALJ-88-K-0086

Sc. ADDRESS (Cily. State and ZIP Codes 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. No.. NO.

11. TITLE (inciaade Secuarity C1mIautcatians

AnAnalysis of Reduced HessianMethods for ______

12. PERSONAL AZTHOR(Sl Constrained Optimization Richard H. Byrd and Jorge Nocedal

13& TYPE Of REPORT 13b. TIME COVEREDO 14. DATE OF REPORT (Yr.. Mo1., Day) 15. PAGE COUNT
Technical 7 FROM 88/05/15 T0 8 /5/ 88/08/31 43

16. SUPPLEMENTARY NOTATION

17. COSATI CODES IB. SUBJECT TERMS (Continaae on 'wipers. if necessary a"d idmnnl'y by block fulip eri
FIELD GROUP SUB. C.A. Constrained optimization, reduced Hessian methods, quasi-

Newton methods, successive quadratic programming,
nonlinear programming

19. ABSTRACT (Comlinim an revers of necessary andj identify by block nuanberl

We study the convergence properties of reduced Hessian successive quadratic pro-
grammning for equality constrained optimization. The method uses a backtracking
line search, and updates an approximation to the reduced Hessian of the Lagrangian
by means of the BFGS formula. Two merit functions are considered for the line
seach: the 41 function and the Fletcher exact penalty function. We give conditions
under which local and superlinear convergence is obtained, and also prove a global
convergence result. The analysis allows the initial reduced Hessian approximation
to be any positive definite matrix, and does not assume that the iterates converge,
or that the matrices are bounded. The effects of a second order correction step,
a watchdog procedure and of the choice of null space basis are considered. This
work can been seen as an extension of the well known results of Powell (1976) for
unconstrained optimization to reduced Hessian methods.

20. OISTPRIBUTIONIAVAILAIBILITY OF ABSTRACT 21. ABSTIRACT SECURITY CLASSIFICATION

UNCL.ASSA IItO/UNLI MITI o SAME AS PT. C3 OTic USERiS C] Unclassified

22a, NAM% OP RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

Dr. Jagdish Chandra (nld w ae

00 FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. Unclassified
SECURITY CLASSIFICATION OF THIS PG


